Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Development Procedure to Improve the Acoustical Performance of a Dash System

2005-05-16
2005-01-2515
This paper discusses a development procedure that was used to evaluate the acoustical performance of one type of dashpanel construction over another type for a given application. Two very different constructions of dashpanels, one made out of plain steel and one made out of laminated steel, were studied under a series of different test conditions to understand which one performs better, and then to evaluate how to improve the overall performance of the inferior dashpanel for a given application. The poorly performing dashpanel was extensively tested with dashmat and different passthroughs to understand the acoustic strength of different passthroughs, to understand how passthroughs affect the overall performance of the dash system, and subsequently to understand how the performance can be improved by improving one of the passthroughs.
Technical Paper

Predicting the Acoustical Performance of Weak Paths in a Sound Package System

2005-05-16
2005-01-2520
The presence of any weak paths or leakage limits the best design and the acoustical performance of a sound package system in a vehicle. Techniques to predict the response at the design level could help in improving the performance of the sound package system. This paper discusses the development, verification, and implementation of an analytical technique for predicting the acoustical performance of a sound package system based on the principles of sound transmission coefficient and the surface area covered by each sub-system. This technique is especially suitable for predicting the acoustical performance of a weak path created by passthroughs or plugs in a sound package system. Initially, a simple system was developed and studied to verify the model. The predicted values were compared with the measured values. Based on the comparison, different parameters were identified and modified such that the model agrees closely with the measured data.
X